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Fig. 1. Overview of our method. Our method aligns given original motion to given control sequence. Our method can take arbitrary control sequences, such
as sketches, labels, audio, and motions. Our method solely relies on within-domain distance in original and control, without needing manual definition of
mapping or training with annotated data.

We introduce a novel method for controlling a motion sequence using an
arbitrary temporal control sequence using temporal alignment. Temporal
alignment ofmotion has gained significant attention owing to its applications
in motion control and retargeting. Traditional methods rely on either learned
or hand-craft cross-domain mappings between frames in the original and
control domains, which often require large, paired, or annotated datasets
and time-consuming training. Our approach, named Metric-Aligning Motion
Matching, achieves alignment by solely considering within-domain distances.
It computes distances among patches in each domain and seeks a matching
that optimally aligns the two within-domain distances. This framework
allows for the alignment of a motion sequence to various types of control
sequences, including sketches, labels, audio, and anothermotion sequence, all
without the need for manually defined mappings or training with annotated
data. We demonstrate the effectiveness of our approach through applications
in efficient motion control, showcasing its potential in practical scenarios.
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1 INTRODUCTION
The problem of aligning a motion sequence with a control sequence
has gained increasing attention owing to the wide range of tasks it
enables. Applications include, for instance, controlling motion based
on a user’s dynamic input, retargeting human movement to a char-
acter with a different skeletal structure, and synchronizing dance
motion with audio structure. However, these tasks present signifi-
cant difficulties, often demanding precise temporal correspondence
and structural coherence between control sequences and motion
sequences, even when the control and motion domains differ signif-
icantly in structure, dimension, duration, or complexity.
Early studies on motion-to-motion retargeting relied on hand-

crafted mapping functions and strategies [Choi and Ko 2000; Gle-
icher 1998; Lee and Shin 1999; Rhodin et al. 2015; Seol et al. 2013;
Tak and Ko 2005; Yamane et al. 2010]. More recent approaches lever-
age large-scale learning-based frameworks to learn direct mappings
between two motions [Li et al. 2023b; Lim et al. 2019; Villegas et al.
2018] or shared embeddings between two domains [Aberman et al.
2020; Lee et al. 2023; Li et al. 2024a]. While deep learning tech-
niques compute mappings empirically, they often require extensive
annotated datasets and prolonged training to ensure robust gener-
alization. Similarly, audio-driven motion synthesis [Alexanderson
et al. 2023; Li et al. 2024b; Tseng et al. 2023] depends heavily on large
paired datasets and substantial computational resources. Recent ef-
forts to reduce data demands, as seen in works like GANimator [Li
et al. 2022], GenMM [Li et al. 2023a], and SinDDM [Raab et al. 2023],
demonstrate that motions can be generated from limited data. How-
ever, these methods still lack robust, built-in alignment strategies
for complex temporal inputs and often require domain-specific con-
straints or supplementary annotations to measure cross-domain
correspondences.

In this study, we propose a motion alignment technique that relies
solely on within-domain distances, which can be naturally defined
without requiring hand-crafted or learnedmapping functions (Fig. 1).
Our approach first computes distances among patches within the
original motion and control sequences separately. We then search
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for couplings between patches in the control sequence and those in
the original motion such that the within-domain distance structure
is preserved as much as possible. These couplings are used to com-
pute a weighted blend of original patches, resulting in an aligned
motion. Technically, our method uses metric alignment techniques
based on the fused semi-unbalanced Gromov-Wasserstein (FSUGW)
optimization objective [Xu and Gould 2024], a modified version of
the Gromov-Wasserstein optimal transport (GW OT) problem. GW
OT has been successfully applied in various applications, such as
identifying correspondences between shapes [Solomon et al. 2016].
By leveraging advancements in GW OT algorithms, our method
achieves cross-domain coupling without explicitly computing cross-
domain distances.

This framework enables the alignment of motion sequences to var-
ious types of control sequences, facilitating a wide range of applica-
tions. These include: (1) waveform-to-motion and sketch-to-motion,
allowing users to control motion sequences through parameterized
1D waveform signals and 2D hand-drawn sketches, and (2) motion-
by-numbers, where users specify only the temporal segmentation
labels. Our framework is also applicable to existing tasks, such as:
(3) motion-to-motion alignment, and (4) audio-conditioned motion
control.
Our contributions are summarized as follows:

(1) We introduce Metric-Aligning Motion Matching (MAMM), a
unified FSUGW-based optimization framework that aligns
motions with a diverse range of control sequences without
requiring task-specific training or algorithm redesign.

(2) We demonstrate that our method achieves high-quality align-
ments between a given motion and control sequence within
seconds, eliminating the need for large datasets, extensive
annotations, or prolonged training times.

(3) We present novel motion editing techniques—waveform-to-
motion, sketch-to-motion, and motion-by-numbers—enabled
by MAMM, which, to our knowledge, are the first of their
kind.

(4) We demonstrate the generalizability of the MAMM frame-
work to established tasks, such as motion-to-motion and
audio-to-motion alignment.

2 RELATED WORKS

2.1 Motion Editing
Motion editing techniques aim to modify existing motion data or
create new motion that satisfies new spatiotemporal constraints,
adheres to specific stylistic requirements, or adapts to different
environmental contexts. Early foundational approaches introduced
the concept of spacetime constraints, formulating motion editing as
an optimization problem guided by physical laws [Gleicher 1997;
Witkin and Kass 1988]. This line of research enabled animators
to enforce physically plausible edits on motion sequences while
maintaining user control over keyframed poses.

Subsequent works focused on lowering the barrier for nonexperts
and improving workflow efficiency through sketch-based interfaces
and other intuitive user controls [Choi et al. 2016; Garcia et al.
2019; Guay et al. 2015; Terra and Metoyer 2004; Thorne et al. 2004].
These methods allowed users to apply edits by sketching curves or

gestures, which were then mapped to character poses and motion
adjustments. Another approach involved creating poses by inter-
polating keyframes spatially [Igarashi et al. 2005]. Parallel efforts
explored physically guided animation tools, where motion was fine-
tuned by automatically inferring or imposing physical properties,
resulting in more believable outputs [Hahn et al. 2012; Shapiro and
Lee 2011].

More recent solutions integrate optimization frameworks directly
into keyframe-based workflows, enabling artists to selectively refine
motion segments without fully discarding manual control [Ciccone
et al. 2019; Koyama and Goto 2018]. In addition, tangible or actuated
puppets provide haptic feedback and a physical interface, further
bridging digital and real-world motion editing [Jacobson et al. 2014;
Yoshizaki et al. 2011]. User performance itself has also served as an
intuitive control mechanism [Dontcheva et al. 2003; Lockwood and
Singh 2012].

Compared to existing methods, a notable feature of our method is
automatically computing the control-to-motion mapping from input
sequences in a unified manner. This allows various input methods
for motion control. By contrast, existing methods require developers
to explicitly define the mapping from control signals to motion.

2.2 Motion Retargeting and Alignment
Motion retargeting transfers motion data from a source character
to a target character, even when their skeletal structures or pro-
portions differ. Early methods formulated this as an optimization
problem, incorporating constraints such as low-level motion rep-
resentations [Gleicher 1998], kinematic constraints [Lee and Shin
1999], end-effector trajectories [Choi and Ko 2000], or dynamic
feasibility [Tak and Ko 2005]. However, these approaches strug-
gled with significant skeletal differences. Later approaches intro-
duced partial correspondences [Rhodin et al. 2015; Seol et al. 2013;
Yamane et al. 2010] or learned mappings independent of skeletal
structures [Rhodin et al. 2014] to handle differing topologies.
The advent of deep learning and large motion capture datasets

led to data-driven methods [Aberman et al. 2020; Li et al. 2024a,
2023b; Lim et al. 2019; Villegas et al. 2018]. Early learning-based
techniques leveraged cycle-consistency and adversarial losses [Vil-
legas et al. 2018] or skeleton-aware components [Aberman et al.
2020]. ACE [Li et al. 2023b] advanced retargeting for characters
with significant skeletal differences using pretrained motion priors.
Learning correspondences between general dynamical systems has
also been investigated [Kim et al. 2020].
WalkTheDog [Li et al. 2024a] introduced motion alignment via

a learned discretized phase manifold, enabling shared embeddings
for characters with different topologies, such as humans and dogs.
Their method uses frequency-scaled motion matching but requires
extensive training and large datasets.

Our method simplifies this process, offering efficient motion align-
ment for small data pairs without requiring extensive training or
large datasets, offering a practical solution for limited-data scenar-
ios.
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2.3 Audio-Driven Motion Synthesis
Audio-driven motion generation (e.g., dance, gesture synthesis) gen-
erates character motion from acoustic features, a long-standing topic
in computer animation. For a comprehensive review, see [Nyatsanga
et al. 2023; Zhu et al. 2024].
Early studies on dance synthesis primarily focused on synchro-

nizing dance motions with musical beats, rhythms, and intensity
using hand-crafted mappings [Ofli et al. 2008; Shiratori and Ikeuchi
2008; Shiratori et al. 2006] or employing example-based approaches
and statistical models [Fan et al. 2012; Fukayama and Goto 2015;
Ofli et al. 2012]. Recent advances in deep learning have enabled
the generation of more expressive dance motions by leveraging
sophisticated motion generation models [Bhattacharya et al. 2024;
Lee et al. 2019; Li et al. 2021; Siyao et al. 2022], including diffusion
models [Alexanderson et al. 2023; Li et al. 2024b; Tseng et al. 2023].
Other approaches combine learned choreo-musical embeddings
with motion graphs [Au et al. 2022; Chen et al. 2021].

Parallel efforts in speech-driven gesture synthesis have similarly
aimed to produce natural co-speech motion. Earlier approaches
relied on extensive manual rules [Cassell et al. 2001; Kopp et al.
2003; Lee and Marsella 2006; Lhommet et al. 2015], while more
recent methods use learning-based methods [Alexanderson et al.
2020; Ferstl and McDonnell 2018; Hasegawa et al. 2018; Takeuchi
et al. 2017; Wu et al. 2021; Yazdian et al. 2021]. However, many
of these methods depend heavily on large paired audio-motion
datasets [Alexanderson et al. 2023; Bhattacharya et al. 2024; Chen
et al. 2021; Fan et al. 2012; Lee et al. 2019; Li et al. 2021; Siyao
et al. 2022] and are computationally demanding [Alexanderson et al.
2023; Li et al. 2024b; Tseng et al. 2023], limiting their adaptability
to new characters or resource-limited environments. Our approach
bypasses these challenges by employing fused semi-unbalanced
Gromov-Wasserstein optimal transport, which reduces reliance on
large datasets and hand-crafted features. This enables more efficient
and flexible audio-to-motion synthesis suitable for a wide range of
contexts.

2.4 Motion Synthesis from Small Data
Building on recent advances in image generation from a single or a
few examples [Granot et al. 2022; Kulikov et al. 2023; Shaham et al.
2019], several studies have explored synthesizing motion using only
a limited number of example sequences. For instance, GANimator [Li
et al. 2022] employs generative adversarial networks to generate
diverse motion patterns from a single instance. GenMM [Li et al.
2023a], in contrast, bypasses the training phase entirely, enabling
rapid motion synthesis through a bidirectional similarity-based
matching framework. SinDDM [Raab et al. 2023] further improves
the quality of generated motion using diffusion models.

While these approaches demonstrate significant flexibility in con-
ditioned motion synthesis tasks – such as inbetweening, trajectory
control [Li et al. 2022, 2023a], and style transfer within the same
skeletal structure [Raab et al. 2023] – they often lack inherent mech-
anisms to handle more complex motion control by sequences. Conse-
quently, achieving desirable outcomes in such scenarios frequently
requires additional annotations or manual interventions, which can
increase both labor and computational costs.

2.5 Optimal Transport
Optimal transport (OT) has been widely applied across various
domains, including machine learning, computer vision, and neu-
roscience [Montesuma et al. 2024]. For instance, Elnekave and
Weiss [Elnekave and Weiss 2022] introduced methods for gener-
ating natural images by matching patch distributions. Advance-
ments in Gromov-Wasserstein (GW) distance have enabled map-
pings between disparate domains, such as shape correspondence
and image-to-color distribution matching [Solomon et al. 2016]. Re-
cent developments in Unbalanced and Fused GW [Chizat et al. 2018;
Sejourne et al. 2021] have further expanded OT applications to areas
such as aligning individual brains [Thual et al. 2022] and unsuper-
vised action segmentation [Xu and Gould 2024]. We incorporate the
fused unbalanced GW OT problem solver [Xu and Gould 2024] as a
core component of our framework, offering a unified and effective
solution to sequence-conditioned motion control.

3 METHOD

3.1 Motion Representation
We represent a motion sequence as a series of time-indexed poses,
as in a previous study [Li et al. 2023a], where each pose is described
by root displacement 𝑉 and joint rotation 𝑅 in character space. At
time 𝑡 , the pose is given by [𝑉𝑡 , 𝑅𝑡 ], where 𝑉 ∈ R𝑇×3 represents
the changes in the root joint position compared to consecutive
frames, and 𝑅 ∈ R𝑇× 𝐽 ×3×3 describes the rotation of each joint in
the character’s root space in matrix representation. Here, 𝐽 denotes
the number of joints.

3.2 Metric-Aligning Motion Matching
Our framework, named Metric-Aligning Motion Matching (MAMM),
integrates motion patch extraction and blending, FSUGW optimiza-
tion, which involves the minimization of Gromov-Wasserstein (GW)
loss andWasserstein loss, into a unified scheme.
We denote the original motion sequence as 𝑋 and the control

(input) sequence as 𝑌 , with 𝑋 ′ representing the aligned motion
sequence (output). The aligned sequence 𝑋 ′ is optimized to retain
similarity to the original sequence𝑋 while aligning with the control
sequence 𝑌 . Both 𝑋 ′ and 𝑋 reside in the same domain, whereas 𝑋 ′
and 𝑌 often belong to different domains, making it challenging to
directly measure the distance between them (e.g., motion andmusic).
Additionally, 𝑋 and 𝑌 may have different lengths. Ultimately, 𝑋 ′
and 𝑌 are optimized to have the same length and exhibit structural
similarity.

Conceptually, the objective of the MAMM framework is to output
an aligned motion such that the pairwise distance matrix of its
frames closely resembles the distance matrix of the control sequence
while retaining similarity to the original motion (see Fig. 2). As
shown in the figure, the distance matrix of our aligned motion
resembles that of the control sequence.

In the actual algorithm, we define the problem as theminimization
of the fused semi-unbalanced Gromov-Wasserstein (FSUGW) loss
𝐿𝐹𝑆𝑈𝐺𝑊 . Our formulation of 𝐿𝐹𝑆𝑈𝐺𝑊 , as presented in Equations
(1), (2), and (3), along with the projected mirror-descent algorithm
employed as a component of our framework, follows the formula-
tions in previous work [Xu and Gould 2024]. By minimizing this
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Fig. 2. Intuitive concept of MAMM framework. Our framework optimizes
transport plan 𝑇 and aligned motion sequence 𝑋 ′, whose patch pairwise
distance matrix is similar to that of control sequence 𝑌 , while resembling
original motion 𝑋 .
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Fig. 3. Explanation of the fused semi-unbalanced Gromov-Wasserstein
(FSUGW) objective and algorithm to minimize it. 𝐿𝑊 constrains 𝑋 ′ to re-
semble𝑋 via transport plan𝑇 and 𝐿𝐺𝑊 encourages𝑇 to be metric-aligning,
which leads to structural similarity between𝑋 ′ and𝑌 . We optimize FSUGW
objective with alternating steps, where the first step optimizes𝑇 with 𝑋 ′

fixed, and second step optimizes 𝑋 ′ over fixed𝑇 .

objective via MAMM,𝑋 ′ is optimized as described. Our contribution
lies in integrating coarse-to-fine optimization (Sec. 3.2.5) and the
patch extraction and blending process into the optimization loop to
ensure temporal consistency (Sec. 3.2.4). Fig. 3 provides an overview
of the framework.

3.2.1 Motion Patch Extraction. To enable fine-grained optimiza-
tion, we follow previous patch-based generation methods [Elnekave
and Weiss 2022; Li et al. 2023a] by splitting the control sequence
𝑌 , original motion 𝑋 , and aligned motion 𝑋 ′ into overlapping tem-
poral patches with a stride of one frame. These patches are labeled
as 𝑌̃ , 𝑋̃ , and 𝑋 ′, respectively. Note that 𝑌̃ and 𝑋̃ remain fixed,
while 𝑋 ′ is updated at every step of the optimization loop (𝑋 ′ ←
ExtractPatches(𝑋 ′) ). Measuring the FSUGW loss at the patch level
ensures the capture of local temporal structures and ensures conti-
nuity.
Hereafter, we denote the length of the patch sequences as 𝐿𝑋 =

|𝑋̃ | and 𝐿𝑌 = |𝑌̃ | = |𝑋 ′ |.

3.2.2 Wasserstein Loss. The Wasserstein loss focuses on establish-
ing direct correspondence between the two sets, 𝑋 ′ and 𝑋 . It is

defined as follows:

𝐿𝑊 (𝑋 ′, 𝑋̃ ,𝑇 ) =
∑︁

𝑥 ′
𝑖
∈𝑋 ′,𝑥𝑘 ∈𝑋̃

𝑑𝑋 (𝑥 ′𝑖 , 𝑥𝑘 )𝑇𝑖,𝑘 . (1)

where 𝑇 ∈ {𝑇 ∈ R𝐿𝑌 ×𝐿𝑋 |𝑇 ≥ 0,𝑇1 = 𝑎, 𝑎 = 1/𝐿𝑌 } denotes the
transport plan matrix (coupling matrix) between 𝑋 ′ and 𝑋̃ , and 𝑑𝑋
is a normalized distance function in the domain of 𝑋̃ and𝑋 ′. We use
the L2-norm as the distance function, normalizing it by either the
maximum or mean distance, depending on the task. By minimizing
min𝑇 𝐿𝑊 w.r.t 𝑋 ′, we encourage each patch in 𝑋 ′ to move closer
to its corresponding patch in 𝑋 via the coupling 𝑇 , resulting in the
aligned motion resembling the original motion.

3.2.3 Gromov-Wasserstein Loss. The Gromov-Wasserstein (GW)
loss evaluates the alignment of internal structures between two
datasets, specifically the control 𝑌 and the original 𝑋 . The loss,
𝐿𝐺𝑊 (𝑌̃ , 𝑋̃ ,𝑇 ), is expressed as follows:

𝐿𝐺𝑊 (𝑌̃ , 𝑋̃ ,𝑇 ) =
∑︁

𝑦𝑖 ,𝑦 𝑗 ∈𝑌̃
𝑥𝑘 ,𝑥𝑙 ∈𝑋̃

|𝑑𝑌 (𝑦𝑖 , 𝑦 𝑗 ) − 𝑑𝑋 (𝑥𝑘 , 𝑥𝑙 ) |2𝑇𝑖,𝑘𝑇𝑗,𝑙 . (2)

where 𝑑𝑌 is the normalized distance function in the domain of 𝑌 . It
is important to note that we do not use the distance between 𝑥 ∈ 𝑋̃
and 𝑦 ∈ 𝑌̃ at all.
Minimizing 𝐿𝐺𝑊 encourages the transport plan 𝑇 to be metric-

aligning, ultimately promoting structural alignment between𝑋 ′ and
𝑌 when combined with the Wasserstein loss described in Sec. 3.2.2.

3.2.4 Fused Semi-Unbalanced Gromov-Wasserstein (FSUGW) Block.
We combine the Wasserstein loss and GW loss to define and opti-
mize 𝐿𝐹𝑆𝑈𝐺𝑊 as an instance of the entropic fused semi-unbalanced
Gromov-Wasserstein problem [Xu and Gould 2024]:

𝑋 ′∗,𝑇 ∗ = argmin
𝑋 ′,𝑇

𝐿FSUGW (𝑋 ′, 𝑋̃ , 𝑌̃ ,𝑇 )

where 𝐿FSUGW (𝑋 ′, 𝑋̃ , 𝑌̃ ,𝑇 ) = 𝛼 · 𝐿GW (𝑌̃ , 𝑋̃ ,𝑇 )
+ (1 − 𝛼) · 𝐿W (𝑋 ′, 𝑋̃ ,𝑇 )
+ 𝜆 · 𝐷KL (𝑇⊤1 ∥ 𝒃) − 𝜖 · 𝐻 (𝑇 ),

subject to 𝑇1 = 𝒂, 𝑇 ≥ 0.

(3)

Here, we define 𝑎 = 1𝐿𝑌 /𝐿𝑌 , 𝑏 = 1𝐿𝑋 /𝐿𝑋 , where 𝐿𝑌 and 𝐿𝑋

are the number of data (frames) in 𝑌̃ (or 𝑋 ′) and 𝑋̃ , respectively.
The term 𝐻 (𝑇 ) = −∑𝑖, 𝑗 𝑇𝑖, 𝑗 𝑙𝑜𝑔(𝑇𝑖, 𝑗 ) represents the soft entropy
constraint, which facilitates optimization via the projected mirror-
descent algorithm [Solomon et al. 2016; Xu and Gould 2024]. The
soft marginal constraint, defined as the 𝐷𝐾𝐿 term, encourages bi-
directional fidelity of the distribution of the aligned motion 𝑋 ′ to
that of𝑋 . While soft constraints are imposed on one side, we enforce
hard constraints on the other side of the marginals,𝑇1 = 𝑎, ensuring
that 𝑇 satisfies the specified marginals. Intuitively, this constraint
ensures that every part of the aligned motion 𝑋 ′ corresponds to
some part of the original motion 𝑋 . The effects of the parameters 𝛼
and 𝜆 will be discussed in Sec. 5.1.

Optimizing 𝐿𝐹𝑆𝑈𝐺𝑊 w.r.t 𝑇 and 𝑋 ′ is similar to the (fused unbal-
anced) Gromov-Wasserstein Barycenter problem [Peyré et al. 2016;
Thual et al. 2022], which is typically solved using a block coordinate
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descent algorithm. Inspired by this, our proposed FSUGW block
optimizes 𝐿𝐹𝑆𝑈𝐺𝑊 by alternating the following steps:

(1) Extract patches: Update the patches 𝑋 ′ using the current
value of 𝑋 ′,

𝑋 ′ ← ExtractPatches(𝑋 ′)
(2) Optimize𝑇 with fixed𝑋 ′:Given𝑋 ′, we find𝑇 as a local min-

imum of 𝐿𝐹𝑆𝑈𝐺𝑊 by applying the projected mirror-descent
algorithm, identical to the version in [Xu and Gould 2024]
except for the parameters. At each stage, 𝑇 is initialized as
ab𝑇 , following previous practices.

(3) Optimize𝑋 ′ with fixed𝑇 :With𝑇 fixed, update𝑋 ′ bymatch-
ing weighted by the transport plan 𝑇 and blending the over-
lapping regions through averaging.

𝑋 ′ ← BlendPatches(𝑇 · 𝑋̃ · 𝐿𝑌 ) .
The patch extraction and blending process in the optimization loop
ensures that spatio-temporally adjacent patches in 𝑋 are encour-
aged to remain adjacent in 𝑋 ′. If 𝑋 ′ is formed by blending spatio-
temporally distant patches, it may result in highly unnatural poses
in the overlapping regions of those patches. However, such cases
are naturally excluded during optimization, as they increase 𝐿𝑊 ,
which the algorithm minimizes.

In practice, this algorithm typically converges after several itera-
tions to produce visually appealing results across various applica-
tions, as demonstrated in Sec. 4. For these steps, we set𝑀 = 20 as
the number of iterations.

3.2.5 Coarse-to-Fine Motion Alignment. Owing to the non-convex
nature of GW problems [Solomon et al. 2016], proper initialization
of the FSUGW block is crucial for guiding the optimization process
toward high-quality aligned motion. To ensure effective initializa-
tion, we adopt a coarse-to-fine optimization strategy, as used in
previous works [Elnekave and Weiss 2022; Li et al. 2022, 2023a].
This approach begins at a coarse level, with the initial transport
plan 𝑇 computed by minimizing only the 𝐿𝐺𝑊 term, and progres-
sively refines the motion through upsampling until reaching the
final stage:

(1) Upsampling: Upsample the output 𝑋 ′𝑘−1 from the previous
stage to serve as the initial guess for stage 𝑘 .

(2) FSUGWOptimization: Apply the FSUGWblock using𝑌𝑘 , 𝑋𝑘

to refine 𝑋 ′𝑘 .
After the final stage 𝑘 = 𝑁 , 𝑋 ′𝑁 achieves a high-quality align-

ment with the control sequence 𝑌 , while preserving the content of
the original motion 𝑋 . In our examples, the coarsest level is set to
be 4 times shorter than the final length, and 𝑁 = 6 stages are used
to progressively upsample the sequence. The pseudocode for the
entire MAMM algorithm is provided in Alg. 1.

3.3 Handling Additional Space-Time Constraints
3.3.1 Soft Keyframes by Example Pairs. We introduce the concept of
“soft keyframes” by adding example patch pairs into the FSUGW op-
timization. These example patch pairs represent sample-to-sample
correspondences between the domains of 𝑌̃ and 𝑋̃ . The patch sam-
ples do not necessarily have to be part of the original or control
sequence; the only requirement is that they belong to the same

ALGORITHM 1: MAMM (Metric-aligning motion matching)
Input: control sequence 𝑌 , original motion 𝑋 , parameters 𝛼 , 𝜆, 𝜖 ,

number of stages 𝑁 , number of iterations𝑀
Output: aligned motion 𝑋 ′
// Coarse-to-fine Motion Alignement
for 𝑘 ← 0 to 𝑁 do

𝑋 ′ ← (𝑘 = 0) ? Initialize() : Upsample(𝑋 ′ ) ;
𝑋𝑘 , 𝑌𝑘 ← Downsample(𝑋,𝑌, 𝑘);
// FSUGW Block
for𝑚 ← 0 to𝑀 do
(𝑋 ′, 𝑌̃ , 𝑋̃ ) ← ExtractPatches(𝑋 ′, 𝑌𝑘 , 𝑋𝑘 );
𝑎 ← 1/𝐿𝑌 , 𝑏 ← 1/𝐿𝑋 , 𝑇 ← (𝑚 = 0) ? ab𝑇 : 𝑇 ;
// Optimize𝑇 via projected mirror descent
𝑇 ← SolveFSUGW(𝑋 ′, 𝑋̃ , 𝑌̃ ,𝑇 , 𝑎,𝑏, 𝛼, 𝜆, 𝜖);
// Optimize 𝑋 ′ via matching
𝑋 ′ ← BlendPatches(𝑇 · 𝑋̃ · 𝐿𝑌 );

end
end
return 𝑋 ′;

domain. We incorporate these example patch pairs into the opti-
mization by applying the following substitution:

𝑋̃ ←
[
𝑋̃ , 𝑋example

]
, 𝑋̃ ′ ←

[
𝑋̃ ′, 𝑋example

]
, 𝑌̃ ←

[
𝑌̃ , 𝑌example

]
,

𝑎 ←
[
𝑎,

𝑤example ·1
𝐿example

]
,𝑏 ←

[
𝑏,

𝑤example ·1
𝐿example

]
,

where𝑋example and𝑌example denote the example patch pairs,𝑤example
denotes the weight of the soft keyframe constraints, and 𝐿example
denotes the number of example patches. Additionally, we constrain
the transport matrix 𝑇 such that all masses assigned to the example
patches in 𝑋̃ (or 𝑋̃ ′) are transported exclusively to their correspond-
ing example patches, and vice versa. This ensures that these soft
keyframes do not interfere with the overall distribution derived
from the original motion 𝑋 , which is reflected in the aligned motion
𝑋 ′ through the soft marginal constraint 𝐷KL

(
𝑇⊤1 ∥ b

)
. The differ-

ence between these soft keyframes and traditional (hard) keyframes,
along with illustrative examples, is discussed in Sec. 5.

3.3.2 Other Constraints. Because a portion of our method relies on
patch extraction and blending, it is compatible with various space-
time control methods. In our implementation, we integrate hard
keyframing and infinite loop constraints, as outlined in GenMM [Li
et al. 2023a].

Hard Keyframes. Hard keyframes are specified pairs of patches
in 𝑋 and 𝑌 that must be coupled. When imposing a hard keyframe
constraint, we fix the specified segments of both 𝑋 ′ and 𝑇 at every
step of the FSUGW optimization process, including during the pro-
jected mirror-descent routine. This ensures that the predetermined
keyframes remain unchanged throughout the alignment process.

Infinite Looping. When imposing an infinite loop constraint, the
last patch of the aligned motion sequence is enforced to match
the first patch of the same sequence, ensuring a seamless loop.
Following the practice in GenMM [Li et al. 2023a], we achieve this by
blending the overlapping region between the end and start patches
consistently.
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Alignment results with these constraints can be observed in the
supplemental video along with the demonstration of our sketch-to-
motion applications.

4 APPLICATIONS
In this section, we demonstrate how the MAMM framework can be
applied to various input control sequences. All use cases are realized
by splitting each control sequence into patches, computing the
distance matrix among the patches, and adjusting the optimization
parameters; the underlying algorithm itself remains unchanged. All
data used in the examples are sourced from Mixamo [Adobe 2025]
or Truebones [Truebones 2025], which contain various motions
and skeletons of humanoids and non-humanoids, respectively. The
sequence lengths in our experiments range from approximately 50
to 600 frames at 30 fps. The patch size of the original motion was
set to 11 frames, with a stride of one frame. Patch extraction from
the control sequence used the same temporal duration and interval.
Additionally, we used the AIST dance database [Tsuchida et al. 2019]
for music data and the BEAT dataset [Liu et al. 2022] for speech
data.

We implemented our applications on a personal computer equipped
with an NVIDIA GeForce RTX 4080 GPU. Each generation typically
finishes within 10 s but may take longer depending on the sequence
length. The parameter values used in our applications are detailed
in the supplemental materials. We also include a supplemental video
to facilitate the visual evaluation of the alignment results.

4.1 Sketch-to-Motion (2D Curve-to-Motion)
In this application, the control sequence is a temporal series of two-
dimensional data points provided by the user. To enhance the user
experience, we have developed a dedicated user interface (UI) for
sketch-based motion control. In this UI, the user draws a 2D curve
on the left-hand canvas and observes the aligned animation on the
right. The user can iteratively refine the animation by redrawing
the curve, placing soft or hard keyframes on the canvas, or enabling
infinite looping. The 2D points along the curve are resampled at
constant time intervals as patches and then fed into the alignment
algorithm. To reduce the impact of unintended noise in the input,
we apply Gaussian smoothing before processing the curve in our
framework.
The user does not need prior knowledge of which part of the

canvas corresponds to specific frames of the animation. As such,
the exact location of the curve does not matter. Instead, the system
analyzes the overall shape and movement of the curve and maps it
to the general structure of the motion. For example, a large circle
is automatically matched with a large cyclic motion, while a small
circle corresponds to a smaller motion. Note that we compute a
mapping from a sampled point on the curve to a motion patch. This
is not a continuous mapping from an arbitrary spatial position to a
pose. Therefore, even if the curve passes through the same position
(i.e., a crossing), the pose at that location on the curve can differ from
the pose at the same spatial location at a different point in time. This
implicit matching is effective in scenarios where exact poses are
less critical and dynamics are more important. If precise mapping is
needed, the user can specify it by adding soft or hard constraints.

An example result is shown in Fig. 4 and Fig. 5. Additionally, we
performed a user study to gather feedback on this tool, which is
discussed in Sec. 6.

4.2 1D Waveform-to-Motion
Here, the control sequence is a temporal series of one-dimensional
scalar values. We demonstrate how periodic motion patterns can be
controlled using time-varying periodic waveforms. A low-frequency
sine wave generates slow periodic motion, while a high-frequency
sine wave produces fast periodic motion. Sharp corners in the wave-
form result in sharp turns in the motion. Additionally, we use a sine
wave with an alternating center as input to achieve complex period-
icity control. The results are provided in Fig. 6 and the supplemental
videos.

4.3 Motion-by-Numbers
Drawing inspiration from successful image synthesis pipelines guided
by segmentation labels [Isola et al. 2017], we align motion to a
user-specified temporal sequence of segmentation labels, each rep-
resented as a one-hot class vector. With MAMM, the original motion
sequence does not require any precomputed or annotated segmenta-
tion labels; instead, the algorithm automatically aligns each segment
according to the input labels. The user does not need prior knowl-
edge of which label corresponds to which motion. However, when
necessary, the user can explicitly specify the mapping by providing
soft or hard constraints. Results are shown in the center row of
Fig. 9 and Fig. 10, as well as in the supplemental video.

4.4 Motion Control by Audio
As mentioned in Sec. 2.3, audio-driven motion control has been
extensively studied in the motion generation community. We focus
on a scenario where the available example sequences are relatively
short (3–20 s in duration) and lack paired audio or auxiliary anno-
tations. The audio input is represented as 40-dimensional MFCC
features, extracted using the Librosa library [McFee et al. 2024].
Both speech and music data are used as audio controls, while short
segments of gesture or dance motion serve as the original motion.
As presented in Fig. 7, our method naturally synchronizes the re-
sulting motion with style, beat, or volume changes in the audio,
even when the original motion style differs from that in the audio.
Notably, this approach does not require any training or specialized,
hand-tuned optimization.

4.5 Motion-to-Motion Alignment
We applied MAMM to cross-skeletal motion-to-motion alignment,
where one motion sequence is matched to another with a different
skeletal structure [Li et al. 2024a]. An example is shown in Fig. 8.
Leveraging its metric-alignment principle, our method effectively
handles both periodic motions, such as walking, and non-periodic
activities, such as combat moves, without requiring additional train-
ing or customized feature engineering.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Motion Control via Metric-Aligning Motion Matching • 7

Fig. 4. Demonstration of character motion control using sketched curve. Character’s movement follows abstract structure of the curve. Additional examples
are available in supplementary video.

5 DISCUSSIONS

5.1 Parameter Effects
We explain the effect of the main parameters in our framework (𝛼
and 𝜆). See Fig. 9, Fig. 10 or supplemental materials to see examples.

The parameter𝛼 balances theWasserstein loss𝐿𝑊 and theGromov-
Wasserstein loss 𝐿𝐺𝑊 . The 𝐿𝐺𝑊 termmaintains structural similarity
between the control sequence and the aligned motion, while 𝐿𝑊
enforces local, patchwise fidelity to the original motion. Increas-
ing 𝛼 amplifies the influence of the control input but may lead to
unnatural outputs if set too high.
The parameter 𝜆 scales the soft marginal regularization term

𝐷KL
(
𝑇⊤1 ∥ b

)
. Intuitively, a larger 𝜆 forces the aligned motion to

more closely maintain the overall distribution of the original motion,
potentially diminishing the influence of the control input if 𝜆 is set
too high.
We recommend selecting relatively large values for 𝛼 and small

values for 𝜆, such as 𝛼 = 0.8 and 𝜆 = 0.05. After evaluating the
initial results, these parameters can be fine-tuned by decreasing 𝛼
or increasing 𝜆 to enhance naturalness, or vice versa, depending on
the desired outcome. Additionally, we have observed that setting
𝜖 = 1 works well for most settings; however, adjustments may be
needed based on the size or complexity of the data.

5.2 Coarse-to-Fine Motion Alignment
While adopting a coarse-to-fine optimization approach generally
improves results, it becomes especially important when the distance
matrix of the control sequence is more complex, such as in motion-
to-motion alignment scenarios. In the supplementary video, we
highlight failure cases that arise when using a one-stage (non-coarse-
to-fine) optimization method.

5.3 Soft Keyframes and Hard Keyframes
As discussed in Sec. 3, our MAMM framework accommodates both
soft keyframing and hard keyframing. In this section, we use the
sketch-to-motion application to illustrate these keyframe concepts
in a practical context.

Soft keyframes are defined as pairs of patch samples drawn from
the control domain and the original motion domain. By contrast,
hard keyframes pair a specific point in time (on the temporal axis)
with a patch in the original motion domain. Consequently, in the
sketch-to-motion setting, soft keyframes can be placed anywhere
on the canvas, whereas hard keyframes must be associated with a
specific time frame and positioned directly on the curve.

This distinction enables an interesting application of soft keyframes:
they can act as “negative keyframes”. As illustrated in Fig. 5, if the

user’s drawn curve is positioned far from keyframes representing
the “hands-up horse rider” and “hands-down horse rider” poses, the
algorithm instead generates a looped “side step” sequence that stays
distant from both keyframe poses.

6 USER FEEDBACK
We invited five participants to test the sketch-to-motion application
to obtain feedback. The participants were computer science students
with no prior experience in character animation editing. During
the user study session, we provided a 10-minute tutorial followed
by 15 minutes of guided practice. Examples of sketches created
by participants are shown in Fig. 11. Finally, the participants were
tasked with arranging an animation to match a given video. All
participants successfully recreated a motion sequence similar to
that shown in the video.

We generally received positive feedback, such as “The application
can be used even without experience in animation editing.” and “I
found changing animations with keyframes to be very convenient.”
However, some participants noted difficulties, stating “I found the
relationship between sketches and animations to be a bit unclear.”
They also suggested improvements, including “Suggesting keyframe
candidates could reduce editing time,” and “A feature to completely
remove unwanted keyframes (hard negative keyframes) would be
useful.” The animations created by the participants and detailed
survey results are included in the supplementary materials.

7 LIMITATIONS AND FUTURE WORKS
Real-time control. In our formulation, the user needed to provide

a complete control sequence before computing the alignment, mak-
ing real-time interaction impossible. Future work could focus on
developing fast approximation techniques for MAMM to enable
real-time user control.

Ambiguity to Rigid Transformation and Symmetry. Since the 𝐿𝐺𝑊
term relied on a metric, it was invariant to rigid transformations and
symmetries in the patch space. For example, the method could not
distinguish between stepping to the right and stepping to the left in
symmetrical step motions, which could result in outputs differing
from users’ expectations. However, tools such as keyframes were
provided to address and control this issue.

Pairwise Distance Scaling. A key challenge lay in optimally de-
signing and normalizing the distance functions, denoted by 𝑑𝑋 and
𝑑𝑌 . Although these distance functions were normalized using the
max or mean value in our experiments, we also attempted to learn a
scalar scaling factor 𝑠 for 𝑑

𝑌̃
within the optimization loop by setting

its value to the global minimum of 𝐿𝐺𝑊 with 𝑇 fixed. However,
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this approach did not yield consistent improvements. Future work
should investigate more robust matrix-scaling strategies, particu-
larly for larger datasets that exhibit multiple clusters.

Scalability Concerns. MAMM’s computational complexity increased
both spatially and temporally with larger input sequences. The
largest example of 𝑇 we tested involved motion with 594 frames
(19.8 s) and control audio with 1441 MFCC features (48.04 s), which
took 7 s to compute. However, as modernmotion datasets sometimes
contain over 100 thousands of frames, storing and operating on such
high-dimensional distance matrices could become prohibitive. De-
veloping more scalable approaches—such as improved hierarchical
techniques or approximations to FSUGW—constitutes an important
direction for future research.
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(b) Soft keyframes example

(c) Soft keyframes as “negative keyframes” example

(a) Soft keyframe poses

Fig. 5. Example of controlling aligned motion with soft keyframes. (a) Users can specify keyframe poses, such as "hands-up horse rider" and "hands-down
horse rider," using our interface. For simplicity, users select poses from original sequence, although our method does not impose strict constraints on keyframe
selection. (b) When motion curve approaches keyframe, algorithm ensures that corresponding poses in aligned motion closely match keyframe poses. (c)
Conversely, when curve is distant from keyframe, algorithm selects alternative poses, such as "side-step" poses, which differ from keyframe poses. This
illustrates how soft keyframes can influence motion in both positive and negative contexts.

Fig. 6. Examples of controlling motion by waveforms. We used (1) frequency-varying sine wave and (2) center-alternating sine wave to control the dance
motion’s frequency and phase. For more examples, please refer to the attached video.

(a) Dance control by music 

(b) Gesture control by speech 

Fig. 7. Examples of motion controlled by audio data. We tested two scenarios: (a) dance movements controlled by music and (b) gestures (barking) controlled
by speech. Here audio data is represented in both waveforms and MFCCs, but we only used MFCCs as input. Synchronization between motion and intensity,
beat, or style of audio was observed. For more details, please refer to supplemental video.
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Control

Aligned

Original

Control

Aligned

Original

Fig. 8. Examples of motion-to-motion alignment, where original motion is synchronized with control motion. First example aligns stepping motion to step
with different skeletal structure and style, matching both frequency and phase. Second example aligns nonperiodic combat sequence involving human and
horse, demonstrating synchronized timing of combat actions.

(a) 𝛼 = 0.2

(b) 𝛼 = 0.8

(c) 𝛼 = 1.0

Fig. 9. Aligned motions for various 𝛼 values with 𝜆 and 𝜖 fixed to 0.05 and
1.0, respectively. Small 𝛼 (e.g., 0.2) results in natural motion but occasionally
ignores control inputs, such as style changes within the same segmentation
label. Conversely, 𝛼 value of 1.0 leads to aligned motions with segments
that exhibit no movement.
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Fig. 11. Examples of sketches created by user study participants. Colored squares represent keyframes. For the animated results of each curve, please refer to
the supplementary materials.
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